шjec
cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics - FP1 0977/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS - FP1
SUMMER 2016 MARK SCHEME

Ques	Solution	Mark	Notes
1		M1A1 A1 A1 A1 M1 A1	
2(a)	$\begin{gathered} \text { The rotation matrix }=\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ \text { The translation matrix }=\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right] \\ \mathbf{T}=\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ =\left[\begin{array}{lll} 0 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{array}\right] \end{gathered}$ The fixed point satisfies $\begin{aligned} & {\left[\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]} \\ & -y+1=x ; x+2=y \\ & (x, y)=\left(-\frac{1}{2}, \frac{3}{2}\right) \text { cao } \end{aligned}$	B1 B1 M1 A1 M1 A1 m1A1	FT their \mathbf{T}

Ques	Solution	Mark	Notes
3	$\begin{aligned} S_{n} & =\sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r^{2} \\ & =\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{6} \\ & =\frac{n(n+1)(3 n(n+1)+2(2 n+1))}{12} \\ & =\frac{n(n+1)}{12}\left(3 n^{2}+7 n+2\right) \\ & =\frac{n(n+1)(n+2)(3 n+1)}{12} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \\ \text { m1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	m 1 for attempting to combine and take out two factors
4(a) (b)	$\begin{aligned} & \left\|z_{1}\right\|=2 ; \arg \left(z_{1}\right)=\frac{5 \pi}{6} \\ & \left\|z_{2}\right\|=\sqrt{2} ; \arg \left(z_{2}\right)=\frac{\pi}{4} \end{aligned}$ EITHER $\begin{aligned} & \|w\|=\frac{\left\|z_{1}\right\|^{2}}{\left\|z_{2}\right\|}=\frac{4}{\sqrt{2}} \\ & \arg (w)=2 \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=\frac{17 \pi}{12} \\ & \begin{array}{c} w=\frac{4}{\sqrt{2}} \cos \left(\frac{17 \pi}{12}\right)+\frac{4}{\sqrt{2}} \sin \left(\frac{17 \pi}{12}\right) \mathrm{i} \\ \quad=-0.73-2.73 \mathrm{i} \end{array} \end{aligned}$ OR $\begin{aligned} z_{1}^{2} & =2-2 \sqrt{3} \mathrm{i} \\ \frac{z_{1}^{2}}{z_{2}} & =\frac{2-2 \sqrt{3} \mathrm{i}}{(1+\mathrm{i})} \times \frac{1-\mathrm{i}}{1-\mathrm{i}} \\ & =\frac{2-2 \sqrt{3}-(2 \sqrt{3}+2) \mathrm{i}}{2} \\ & =-0.73-2.73 \mathrm{i} \end{aligned}$ OR $\begin{aligned} & z_{1}^{2}=2-2 \sqrt{3} \mathrm{i} \\ & a+\mathrm{i} b=\frac{2-2 \sqrt{3} i}{1+\mathrm{i}} \\ & (a+\mathrm{i} b)(1+\mathrm{i})=2-2 \sqrt{3} \mathrm{i} \\ & a-b+i(a+b)=2-2 \sqrt{3} \mathrm{i} \\ & a-b=2 ; a+b=-2 \sqrt{3} \\ & \frac{z_{1}^{2}}{z_{2}}=-0.73-2.73 \mathrm{i} \end{aligned}$	$\begin{gathered} \text { B1B1 } \\ \text { B1B1 } \\ \text { M1A1 } \\ \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { (M1A1) } \\ \text { (M1) } \\ \text { (A1A1) } \\ \text { (A1) } \\ \text { M1A1 } \\ \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	FT from (a) A1 numerator, A1 denominator

Ques	Solution	Mark	Notes
6	Let the roots be $\alpha, \frac{1}{\alpha}, \beta$. Then, $\begin{align*} \alpha+\frac{1}{\alpha}+\beta & =-\frac{b}{a} \tag{i}\\ 1+\alpha \beta+\frac{\beta}{\alpha} & =\frac{c}{a} \tag{ii}\\ \beta & =-\frac{d}{a} \tag{iii} \end{align*}$ From (i), $\alpha+\frac{1}{\alpha}=-\frac{b}{a}+\frac{d}{a}$ From (ii), $\alpha+\frac{1}{\alpha}=\left(\frac{c}{a}-1\right)\left(-\frac{a}{d}\right)$ Therefore $\begin{aligned} & \frac{d-b}{a}=\left(\frac{c-a}{a}\right)\left(-\frac{a}{d}\right) \\ & d^{2}-b d=a^{2}-a c \end{aligned}$	M1 A1 M1A1 A1 A1	M1 attempting to eliminate one of the parameters
7	The result to be proved gives $x_{1}=2+1=3$ which is correct so true for $n=1$. Let the result be true for $n=k$, ie $x_{k}=2^{k}+k$ Consider (for $n=k+1$) $\begin{aligned} & x_{k+1}=2\left(2^{k}+k\right)-k+1 \\ & =2^{k+1}+(k+1) \end{aligned}$ Hence true for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=1$, the result is proved by induction.	B1 M1 M1A1 A1 A1	Award A1 for completely correct solution
8(a) (b)	Taking logs, $\ln f(x)=\sin x \ln x$ Differentiating, $\begin{aligned} & \frac{f^{\prime}(x)}{f(x)}=\cos x \ln x+\frac{\sin x}{x} \\ & f^{\prime}(x)=(x)^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right) \end{aligned}$ Consider $f^{\prime}(0.35)=-0.00451 \ldots$ $f^{\prime}(0.36)=0.0156 \ldots$ The change of sign indicates a root between 0.35 and 0.36 .	$\begin{array}{\|c} \text { M1 } \\ \text { A1A1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	Accept - 0.00646... Accept 0.0223...

Ques	Solution	Mark	Notes
	$\begin{aligned} u+\mathrm{i} v & =(x+\mathrm{i}[y+2])^{2} \\ & =x^{2}+2 \mathrm{i} x(y+2)-(y+2)^{2} \end{aligned}$ Equating real and imaginary parts, $u=x^{2}-(y+2)^{2} ; v=2 x(y+2)$	M1 A1 M1 A1	
(b)	Substituting $y=x-1$, $\begin{aligned} & u=x^{2}-(x+1)^{2}=-(2 x+1) \\ & v=2 x(x+1) \end{aligned}$ Eliminating x, $\begin{aligned} v & =-(u+1)\left(-\frac{(u+1)}{2}+1\right) \\ & =\left(\frac{u^{2}-1}{2}\right) \text { or equivalent } \end{aligned}$	M1 A1 M1 A1	FT from (a) provided equally difficult

