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INTRODUCTION 
 
This marking scheme was used by WJEC for the Summer 2016 examination.  It was 
finalised after detailed discussion at examiners' conferences by all the examiners involved in 
the assessment.  The conference was held shortly after the paper was taken so that 
reference could be made to the full range of candidates' responses, with photocopied scripts 
forming the basis of discussion.  The aim of the conference was to ensure that the marking 
scheme was interpreted and applied in the same way by all examiners. 
 
It is hoped that this information will be of assistance to centres but it is recognised at the 
same time that, without the benefit of participation in the examiners' conference, teachers 
may have different views on certain matters of detail or interpretation. 
 
WJEC regrets that it cannot enter into any discussion or correspondence about this marking 
scheme. 
 



 

1 
© WJEC CBAC Ltd. 

GCE MATHEMATICS – FP1 

 

SUMMER 2016 MARK SCHEME 
 

 

Ques Solution Mark Notes 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
1)1(

)(
)()(

22









x

x

hx

hx
xfhxf  

                              = 
)1)(1(

)1()1()( 22





xhx

hxxxhx
 

 = 
)1)(1(

22 22322223





xhx

xhxxhxhhxhxxx
 

 =    
)1)(1(

2 222





xhx

hxhhxhx
                    

               
h

xfhxf

h
xf

)()(
  

0

lim
)(




  

                         
)1)(1(

2
  

0

lim 2








xhx

hhxxx

h
 

                         = 
2

2

)1(

2





x

xx
 

 
M1A1 

 

A1 

 
 

A1 

 

 

A1 

 

 

 

 

M1 
 
 

A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2(a) 
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The rotation matrix = 
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The fixed point satisfies 
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m1 for attempting to combine 

and take out two factors 
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   detM = )()(5)2(2 2   

               = 334    

  Substituting   = 1, detM =0 (therefore singular).  

        )4)(1(34 23    

   The other two roots (of detM = 0) are complex 

since 1542  acb so no other real values of  

result in a singular M.   cao 

    

   Using row operations, 
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   The first two (complete) rows are identical 

therefore consistent. 

 

    Let z = . 

    Then y =  + 1. 

    and x =  – 3 –1. 
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M1 attempting to eliminate one 

of the parameters 
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The result to be proved gives 

      3121 x  

which is correct so true for n = 1. 

Let the result be true for n = k, ie 
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Hence true for n = k  true for n = k + 1 and 

since true for n = 1, the result is proved by 

induction. 
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Award A1 for completely 

correct solution 
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Taking logs, 
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Differentiating, 
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The change of sign indicates a root between 0.35 

and 0.36. 
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FT from (a) provided equally 

difficult 
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